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ABSTRACT 

 
In this paper we will generalize theorem 9 of Hahn and Mitchell (1969) in bounded symmetric domain on Hardy Space 
to Bergman Space. 
 
1. Definition and Preliminary Results.  
Let D be a bounded symmetric domain in the complex 
vector space ( )1NC N >  in the cananical Harisch 
Chandra realization. It is known that D is circular and 
star-shaped with respect to 0 D∈  and has a Bergman-
Silov boundary b, which is circular and measurable. Let 
Γ  be the group of holomorphic automorphisms of D and 

0Γ  its isotropy subgroup with respect to 0. The group Γ  
is transitive on D and the holomorphic automorphisms 
extend continuous to the topological boundary of  D.  
The group 0Γ  is transitive on b and b has a unique 

normalization 0Γ  invariant measure µ  which is given 

by 1
t td V dsµ −= , V the Euclidean volume of b and tds  

the Euclidean volume element at t (Koranyi and Wolf, 
1965). 
 
et H(D) denotes the class of holomorphic functions on as 

( )0pA p< < ∞ D, we define the Bergman space 
follows: 

1

1( ) : ( ) ( ) ,p

ppp p
zA

A A D f f H D and f f z dv
V

⎧ ⎫⎪ ⎪⎛ ⎞= = ∈ = < ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
∫

  

or equivalently (Marzuq, 1984a) as, 
1

0 1
1( ) : ( ) sup ( ) .p

ppp p
r zA

D

A A D f f H D and f f rz dv
V< <′

⎧ ⎫
⎛ ⎞⎪ ⎪′ ′= = ∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
∫

 

In the rest of the paper C is a positive constant not 
depending on the function, and not necessarily the same at 
each occurrence. 
 
2. Let T be a linear functional on pA . 
Then,  *( )pT A∈  if and only if it is bounded on the 

sphere in pA  
Topologies *( )pA  by setting, 

1

sup
( )

pA

T T f
f

=

= , *( )pA  is Banach Space (Rudin, 

1974). 
  For, z∈D set ( ) ( )z f f zγ =  (2.1) 

Marzuq (1984b) studied linear functional in pA  space. 
 
3. Weak convergence. 
         Let { }nf  be a sequence ( )pA D .  Then ( )nf is 

said to converge weakly to ( )pf A D∈ , written 
w

nf f→ , if and only if ( ) ( )nf fγ γ→ as n→∞, for 

every *)( pA∈γ . We call f is the weak limit of { }nf .  
     The weak limit of a weakly convergent sequence is 
unique, for if ( ) ( )nf fγ γ→  and )()( gfn γγ → for 

all *( )PAγ ∈ then, 

( ) ( ) ( ) 0n nf g f f f gγ γ γ− = − + − =  as n→∞. 

        Thus ( ) 0f gγ − =  for all ,)( *pA∈γ  and hence 
f = g, since if f ≠ g, by Corollary (Marzuq, 1984b), there 
exist ,)( *pA∈γ such that 0)( ≠− gfγ  which 
contradicts the conclusion ( ) 0f gγ − = for all 

*( )pAγ ∈ . 
 We have the following theorem which generalizes 
theorem 9 (Han and Mitchell, 1969). 
 
Theorem1. Let ,ff w

n→ where p
n Af ∈ then, 

lim ( ) ( )nn
f z f z

→∞
=  uniformly or compact bounded 

symmetric D, where D is an irreducible bounded 
symmetric domain. 
 
We require the following lemma to prove theorem 1. 
 
Lemma 1:  let D be as in theorem1 and X = 
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{ : ( )pf A fγ∈  is bounded on  X  for fixed 

}*( )pAγ ∈ . Then there exists B > 0, independent of  f , 

such that,  
(i)  γγ Bf ≤)( , 

(ii)  
0

2 /

( , , )( )
( ) n

o
N p

BC n p Df z
l r

≤
−

, rDz ∈ , for f X∈ . 

 
Proof.  The proof of (i) is the same as the proof of 
theorem 7 (Walters, 1950) (ii) follows from (2.1), and 
lemma 4 (Marzuq, 1984b). 
 
Proof of theorem 1.  
 Since )()( ffn γγ →  for all ,)( *pA∈γ then )( nfγ  
is bounded independently of n. By lemma1 we get, 

(ii) 
0

2 /

( , , )( )
( ) n

o
n N p

BC n p Df z
l r

≤
−

  for  rDz ∈ , and the 

bound is independent of n and z.  
Since )()( zff nnz =γ  by (2.1), )()( zfzfn → for 

rDz ∈ .  
 
Hence by Vitali's convergence theorem for 

NC [(Valdimirov, 1966), lemma 4] 
)()( zfzfn → uniformly on compact subset of  D. 

 
4. A necessary and sufficient condition for a 
holomorphic function to belong to the space 

( 0)pA p > .  
We have the following theorem. 
 
Theorem2. Let D be bounded symmetric domain, 

,1, <<∈ roDz ro  and f is holomorphic on D. Then 
PAf ∈ if and only if there exists a constant 0( )C z , 

independent of  r, such that, 

( ) ( ), ( ) p
r

D

T z f dv C zξξ ξ ≤∫ o o ,                   (4.1) 

where, 

              

2
( , )

( , )
( , )

k z
T z

k z z
ξ

ξ = , 

and ( , )k z ξ is the Bergman Kernel of D.  
 
We need the following lemma for the proof of theorem 2. 
Lemma2.  The expression ( , )T z dvξξ  is invariant 

under Γ , (the group of holomorphic automorphisms of  
D) . 

Proof.   Let Γ∈γ such that ( ) 0=zγ  and ( )γ ξ ξ ′= . 
Then, 

2 22
2

2

( , )
( , )

( , )

z o

z o

zk o dv
z

T z dv
zk o o
z

ξ

ξ

δ δξ δξξ
δ δξ δξ

ξ
δ
δ

′
′=

′=

′ ′
′

′
=

′
 

1 dv
V ξ ′= , (4.2) 

(Bergman, 1950). 
 
Proof of theorem2. Assume pf A∈  for fixed 

( , ),
( , )

k zz D
k z z

ζ
∈  is continuous with respect  to ξ  cn D  

(Stoll, 1977).  
 
Therefore,  

( ) 1max
, ( , ) ( , )p p

r o p
D

T z f dv T z VM r f
Dξξ ξ ξ

ζ
≤

∈∫ o  

( ) ( )oAo zCfzC p =≤ . 
 
This proves the necessity of (4.1). 
Conversely, assume (4.1) is satisfied.   
Then, 
               
1 ( ) ( , ) ( ) .

p p

D D

f r dv T o f r dv
V ι ιξ ξξ ξ ξ′ ′ ′=∫ ∫  

For, Dξ ∈ , there exists a holomorphic automorphisms 

say Yξ  such that 0( ) 0Y zξ =  which maps ξ  into ξ ′  
then by (4.2) we get, 
                              

1 0 0
1 ( ) ( , ) ( ) ( ).

p p

D D

f r dv T z f r dv C z
V ξξ

ξ ξ ξ′ = ≤∫ ∫
. 
Hence, 
                             

' 0

sup 1 ( ) ( ) ,
1

p

D

f r dv C z
o r V ξξ ′ ≤ < ∞
≤ < ∫  

and pf A∈ . 
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